Editorial
Find the shortest path in the graph from vertex to vertex using breadth first search.
Example
The graph given in the example, has the following form:
Algorithm realization
Declare an adjacency matrix to store the graph and an array to store the shortest distances from the source to the vertices.
#define MAX 101 int g[MAX][MAX], dist[MAX];
The bfs function implements a breadth-first search starting from the vertex .
void bfs(int start) {
Initialize the array. If , it means that vertex is not visited.
memset(dist, -1, sizeof(dist)); dist[start] = 0;
Dclare and initialize a queue .
queue<int> q; q.push(start);
Continue the breadth-first search as long as the queue is not empty.
while (!q.empty()) {
Extract and remove vertex from the front of the queue.
int v = q.front(); q.pop();
Where can we go from vertex ? Iterate over the edges .
for (int to = 1; to <= n; to++)
If there is an edge from to and vertex is not visited, then move to it (the edge becomes an edge of the breadth-first search tree).
if (g[v][to] && dist[to] == -1) {
Add vertex to the end of the queue and compute the shortest distance .
q.push(to); dist[to] = dist[v] + 1; } } }
The main part of the program. Read the input data.
scanf("%d %d %d", &n, &s, &f); for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) scanf("%d", &g[i][j]);
Start the breadth-first search from vertex .
bfs(s);
Print the shortest distance. If there is no path to vertex , set .
if (dist[f] < 0) dist[f] = 0; printf("%d\n", dist[f]);
Algorithm realization — adjacency list
Declare an adjacency list to store the graph and an array to store the shortest distances from the source to the vertices.
vector<vector<int> > g; vector<int> dist;
The bfs function implements a breadth-first search starting from the vertex .
void bfs(int start) {
Initialize the array. If , it means that vertex is not visited.
dist = vector<int>(n + 1, -1); dist[start] = 0;
Dclare and initialize a queue .
queue<int> q; q.push(start);
Continue the breadth-first search as long as the queue is not empty.
while (!q.empty()) {
Extract and remove vertex from the front of the queue.
int v = q.front(); q.pop();
Where can we go from vertex ? Iterate over the edges .
for (int to : g[v])
If vertex is not visited, then move to it (the edge becomes an edge of the breadth-first search tree).
if (dist[to] == -1) {
Add vertex to the end of the queue and compute the shortest distance .
q.push(to); dist[to] = dist[v] + 1; } } }
The main part of the program. Read the input data.
scanf("%d %d %d", &n, &s, &f); g.resize(n + 1); for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) { scanf("%d", &val); if (val == 1) g[i].push_back(j); }
Start the breadth-first search from vertex .
bfs(s);
Print the shortest distance. If there is no path to vertex , set .
if (dist[f] < 0) dist[f] = 0; printf("%d\n", dist[f]);
Java realization — adjacency matrix
import java.util.*; public class Main { static int g[][], dist[]; static int n, s, f; static void bfs(int start) { Arrays.fill(dist,-1); dist[start] = 0; Queue<Integer> q = new LinkedList<Integer>(); q.add(start); while(!q.isEmpty()) { int v = q.poll(); for(int to = 1; to <= n; to++) if (g[v][to] == 1 && dist[to] == -1) { q.add(to); dist[to] = dist[v] + 1; } } } public static void main(String[] args) { Scanner con = new Scanner(System.in); n = con.nextInt(); s = con.nextInt(); f = con.nextInt(); g = new int[n+1][n+1]; dist = new int[n+1]; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) g[i][j] = con.nextInt(); bfs(s); if (dist[f] < 0) dist[f] = 0; System.out.println(dist[f]); con.close(); } }
Java realization — adjacency list
import java.util.*; public class Main { static ArrayList<Integer>[] g; static int dist[]; static void bfs(int start) { Arrays.fill(dist,-1); dist[start] = 0; Queue<Integer> q = new LinkedList<Integer>(); q.add(start); while(!q.isEmpty()) { int v = q.poll(); for(int i = 0; i < g[v].size(); i++) { int to = g[v].get(i); if (dist[to] == -1) { q.add(to); dist[to] = dist[v] + 1; } } } } @SuppressWarnings("unchecked") public static void main(String[] args) { Scanner con = new Scanner(System.in); int n = con.nextInt(); int s = con.nextInt(); int f = con.nextInt(); g = new ArrayList[n+1]; for(int i = 0; i <= n; i++) g[i] = new ArrayList<Integer>(); dist = new int[n+1]; for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) { int val = con.nextInt(); if (val == 1) g[i].add(j); } bfs(s); if (dist[f] < 0) dist[f] = 0; System.out.println(dist[f]); con.close(); } }
Python realization — adjacency matrix
Import the deque.
from collections import deque
The bfs function implements a breadth-first search starting from the vertex .
def bfs(start):
Initialize the list. If , it means that vertex is not visited.
global dist dist = [-1] * (n + 1) dist[start] = 0
Declare and initialize a queue .
q = deque([start])
Continue the breadth-first search as long as the queue is not empty.
while q:
Extract and remove vertex from the front of the queue.
v = q.popleft()
Where can we go from vertex ? Iterate over the edges .
for to in range(1, n + 1):
If there is an edge from to and vertex is not visited, then move to it (the edge becomes an edge of the breadth-first search tree).
if g[v][to] == 1 and dist[to] == -1:
Add vertex to the end of the queue and compute the shortest distance .
q.append(to) dist[to] = dist[v] + 1
The main part of the program. Read the input data.
n, s, f = map(int, input().split()) g = [[] for _ in range(n + 1)] for i in range(1, n + 1): g[i] = [0] + list(map(int, input().split()))
Start the breadth-first search from vertex .
bfs(s)
Print the shortest distance. If there is no path to vertex , set .
if dist[f] < 0: dist[f] = 0 print(dist[f])
Python realization — adjacency list
Import the deque.
from collections import deque
The bfs function implements a breadth-first search starting from the vertex .
def bfs(start):
Initialize the list. If , it means that vertex is not visited.
global dist dist = [-1] * (n + 1) dist[start] = 0
Declare and initialize a queue .
q = deque([start])
Continue the breadth-first search as long as the queue is not empty.
while q:
Extract and remove vertex from the front of the queue.
v = q.popleft()
Where can we go from vertex ? Iterate over the edges .
for to in g[v]:
If vertex is not visited, then move to it (the edge becomes an edge of the breadth-first search tree).
if dist[to] == -1:
Add vertex to the end of the queue and compute the shortest distance .
q.append(to) dist[to] = dist[v] + 1
The main part of the program. Read the input data.
n, s, f = map(int, input().split())
Initialize and construct the adjacency list .
g = [[] for _ in range(n + 1)] for i in range(1, n + 1): row = [0] + list(map(int, input().split())) for j in range(1, n + 1): if row[j] == 1: g[i].append(j)
Start the breadth-first search from vertex .
bfs(s)
Print the shortest distance. If there is no path to vertex , set .
if dist[f] < 0: dist[f] = 0 print(dist[f])