Раскраска
На занятиях школьного кружка Евгению научили изготовлять из бумаги модели правильных многогранников (платоновых тел) и полуправильных многогранников (архимедовых тел). Она запомнила следующие определения:
Платоновым телом называют (выпуклый) многогранник, в котором все грани - правильные одинаковые многоугольники, а многогранные углы при всех вершинах одинаковы.
Архимедовым телом называют (выпуклый) многогранник, в котором все грани - правильные многоугольники (не обязательно с одинаковым количеством сторон), а многогранные углы при всех вершинах одинаковы. При этом существует как минимум две разные грани.
Таким образом, в архимедовом теле грани каждого вида встречаются в том же количестве и в той же последовательности при обходе вокруг каждой вершины (или для одинаковых, или для противоположных направлений обхода, если "смотреть извне").
Несколько моделей многогранников Евгения изготовила для оформления кабинета математики и прихватила домой, чтобы поразить своих родных. Впечатления, конечно, она произвела. Но, ужиная, недосмотрела, как младшая сестра Марийка взялась раскрашивать грани: каждую грань только одной краской. При этом несколько граней могли быть и одного цвета, даже если они были смежными, то есть имели общее ребро. Евгения задумалась... Ее, как будущего математика, заинтересовал вопрос: сколькими способами можно раскрасить грани тела Архимеда, имея определенное количество красок, с точностью до симметрий - движений пространства, оставляющих многогранник на том же месте. Иначе говоря, если не различают раскраски, полученные одну из другой взаимно однозначным отображением граней при сохранении отношения смежности.
Зная все о смежности или несмежности граней тела Платона или Архимеда, определите количество раскрасок этого многогранника для данного количества цветов.
Входные данные
В первой строке указано количество цветов m (m < 6). Количество входных строк на 1 превышает количество граней многогранника и меньше чем 24. Все грани многогранника пронумерованы последовательными натуральными числами, начиная с 1. j-ая строка (j > 1) содержит (неупорядоченный) перечень номеров граней, смежных с гранью j – 1.
Входные данные гарантируют, что количество симметрий многогранника не превосходит 120.
Выходные данные
Вывести количество раскрасок граней тела, выполненных с помощью m красок и различных с точностью до симметрий многогранника.