Возврат кредита
Фермер Джон должен Бесси n галлонов молока. Он должен вернуть ей молоко в течение k дней. Однако он не хочет отдавать молоко слишком быстро. С другой стороны, он должен показывать прогресс в возвращении долга. Поэтому он должен возвращать Бесси не менее m галлонов молока каждый день.
ФД собирается делать так. Он выбирает положительное целое число x. Затем повторяет следующую процедуру каждый день:
Предположим, что ФД уже отдал Бесси g галлонов молока, он вычисляет (n − g) / x с округлением вверх. Назовём это число y.
Если y меньше чем m, то устанавливает y равным m.
Даёт Бесси y галлонов молока.
Определите максимальное x такое, что если ФД будет следовать этой процедуре, то ФД отдаст Бесси не менее n галлонов молока после k дней.
Входные данные
Три натуральных числа n (1 ≤ n ≤ 10^12
), k (1 ≤ k ≤ 10^12
), m (1 ≤ m ≤ 10^12
), удовлетворяющих k * m < n.
Выходные данные
Выведите наибольшее натуральное число x такое, что ФД отдаст Бесси не менее n галлонов молока, используя описанную выше процедуру.
Пример
Для первого теста, когда x = 2, ФД отдаст Бесси 5 галлонов молока в первый день и m = 3 галлонов молока в каждый из двух последующих дней.