Вгадай число
Мого сина, який захоплюється технологіями, зацікавила гра "Вгадай число". У цій грі гравець має знайти приховане додатне ціле число за не більше ніж T спроб (або ходів). Параметри T та здоров'я H визначаються на початку гри. У кожному ході гравець вводить число. Якщо це число збігається з прихованим, він виграє, за умови, що H ≥ 0. Якщо введене число більше за приховане, H зменшується на 1. В іншому випадку, H залишається незмінним. Коли H стає від'ємним або T досягає 0, гравець програє. Гравець може бачити залишок ходів і одиниць здоров'я після кожного ходу. Хоча гра здається конструктивною, але мене насторожує, що мій син завжди виграє. Він каже, що має алгоритм для знаходження прихованого числа, але я не можу йому повірити, оскільки для заданих H та T має існувати таке велике число, яке не можна вгадати жодним алгоритмом. Щоб довести, що мій син помиляється, я прошу вас допомогти мені знайти найменше M, для якого принаймні одне число від 1 до M не може бути вгадане для заданих T та H.
Наприклад, не існує жодного алгоритму для знаходження всіх додатних цілих чисел, не більших за M = 3, за 2 ходи та 0 одиниць здоров'я.
Вхідні дані
Є декілька тестових випадків. Кожен тестовий випадок складається з одного рядка, що містить два невід'ємні цілі числа T та H (0 ≤ T, H ≤ 100). Вхід завершується рядком "0 0", який не повинен оброблятися.
Вихідні дані
Для кожного тестового випадку виведіть M, описане вище, в одному рядку. Оскільки M може бути занадто великим, виведіть його за модулем 10^9+7.