Editorial
To compute the binomial coefficient, you can use the following formula:
Declare a variable and initialize it with a value of . Then multiply by and divide the result by . After that multiply by and divide by . Continue this process of multiplication and division times (the numerator and denominator of after simplification by contain factors).
For the recursive implementation of the binomial coefficient, use the following formula:
Algorithm realization
The Cnk function returns the binomial coefficient using an iterative method.
int Cnk(int n, int k) { int res = 1; for(int i = 1; i <= k; i++) res = res * (n - i + 1) / i; return res; }
The main part of the program. Read the input data.
scanf("%d %d",&n,&k);
Compute and print the answer.
res = Cnk(n,k); printf("%d\n",res);
Algorithm realization – recursion
The Cnk function returns the binomial coefficient using a recursive method.
int Cnk(int n, int k) { if (n == k) return 1; if (k == 0) return 1; return Cnk(n - 1, k - 1) + Cnk(n - 1, k); }
The main part of the program. Read the input data.
scanf("%d %d",&n,&k);
Compute and print the answer.
res = Cnk(n,k); printf("%d\n",res);
Algorithm realization – recursion with memorization
Declare a array to store the values of the binomial coefficient: .
int dp[35][35];
The Cnk function returns the binomial coefficient using a recursive method. Memoization technique is used.
int Cnk(int n, int k) { if (n == k) return 1; if (k == 0) return 1; if (dp[n][k] != -1) return dp[n][k]; return dp[n][k] = Cnk(n - 1, k - 1) + Cnk(n - 1, k); }
The main part of the program. Read the input data.
scanf("%d %d",&n,&k);
Initialize the array.
memset(dp,-1,sizeof(dp));
Compute and print the answer.
res = Cnk(n,k); printf("%d\n",res);
Java realization – recursion
import java.util.*; public class Main { static int Cnk(int n, int k) { if (n == k) return 1; if (k == 0) return 1; return Cnk(n - 1, k - 1) + Cnk(n - 1, k); } public static void main(String[] args) { Scanner con = new Scanner(System.in); int n = con.nextInt(); int k = con.nextInt(); int res = Cnk(n,k); System.out.println(res); con.close(); } }
Java realization – recursion with memorization
import java.util.*; public class Main { static int dp[][]; static int Cnk(int n, int k) { if (n == k) return 1; if (k == 0) return 1; if (dp[n][k] != -1) return dp[n][k]; return dp[n][k] = Cnk(n - 1, k - 1) + Cnk(n - 1, k); } public static void main(String[] args) { Scanner con = new Scanner(System.in); int n = con.nextInt(); int k = con.nextInt(); dp = new int[n+1][k+1]; for(int i = 0; i <= n; i++) Arrays.fill(dp[i],-1); int res = Cnk(n,k); System.out.println(res); con.close(); } }
Python realization – comb
To compute the binomial coefficient, we shall use the built-in function .
import math;
Read the input data.
n, k = map(int, input().split())
Compute and print the answer.
res = math.comb(n, k) print(res)
Python realization – factorial
The function computes the factorial of the number .
def fact(x): if x: return fact(x - 1) * x else: return 1
The main part of the program. Read the input data.
n, k = map(int, input().split())
Compute and print the answer.
res = fact(n) // (fact(k) * fact(n - k)) print(res)
Python realization – recursion with memorization
The Cnk function returns the binomial coefficient using a recursive method. Memoization technique is used.
def Cnk(n, k, dp): if n == k: return 1 if k == 0: return 1 if dp[n][k] != -1: return dp[n][k] dp[n][k] = Cnk(n - 1, k - 1, dp) + Cnk(n - 1, k, dp) return dp[n][k]
The main part of the program. Read the input data.
n, k = map(int, input().split())
Declare a list to store the values of the binomial coefficient: .
dp = [[-1] * 35 for _ in range(35)]
Compute and print the answer.
res = Cnk(n, k, dp) print(res)