Editorial
The number of regular irreducible fractions (with denominator ) is equal to the number of positive integers such that and is coprime with . The count of such numbers equals the Euler function .
Example
For we have regular irreducible fractions:
Algorithm realization
The euler function computes the value of .
int euler(int n) { int i, result = n; for (i = 2; i * i <= n; i++) { if (n % i == 0) result -= result / i; while (n % i == 0) n /= i; } if (n > 1) result -= result / n; return result; }
The main part of the program. Read the input value of and print .
while(scanf("%d",&n),n) printf("%d\n",euler(n));
Java realization
import java.util.Scanner; public class Main { static int euler(int n) { int result = n; for(int i = 2; i * i <= n;i++) { if (n % i == 0) result -= result / i; while (n % i == 0) n /= i; } if (n > 1) result -= result / n; return result; } public static void main(String[] args) { Scanner con = new Scanner(System.in); while(con.hasNext()) { int n = con.nextInt(); if (n == 0) break; System.out.println(euler(n)); } con.close(); } }
Python realization
import math
The euler function computes the value of .
def euler(n): result = n i = 2 while i <= math.isqrt(n): if n % i == 0: result -= result // i while n % i == 0: n //= i i += 1 if n > 1: result -= result // n return result
The main part of the program. Read the input value of and print .
while True: n = int(input()) if n == 0: break print(euler(n))