False figures
This problem is a test validator for previous problem. The most dicult part is already tested, you have only to test positioning of circles.
Imagine table {a_ij} of 1000 lines and 1000 coloumns. There are Q queries like:
i_k j_k r_k, 1 ≤ k ≤ Q
Each of them de nes region of elements of table {a_ij} such, that (i-i_k)^2 + (j-j_k)^2 ≤ r^2_k.
For convenience this region is called circle with centre in cell (i_k, j_k) and radius r_k.
Pair of queries k and l (k < l) is invalid, if circles k and l have common cells and there is circle t: k < t≤ l, that isn't contained in circle k. Circles of dierent queries can match.
Determine, if there is at least one invalid pair among queries.
Input
The rst line has number Q, that is amount of queries. Then Q lines describe queries with 3 integers in each string i_k, j_k, r_k, which are numbers of line and coloumn of central cell and circle radius.
Output
Если есть хотя бы одна невалидная пара запросов, вывести номера этих запросов в произвольном порядке. Если таких пар много, разрешается вывести любую из них. Если невалидных пар нет, вывести "Ok".
Limits
1 ≤ Q ≤ 10^6
1 + r_k ≤ i_k ≤ 1000-r_k
1 + r_k ≤ j_k ≤ 1000-r_k
0 ≤ r_k < 500