Editorial
Using the algorithm Sieve of Eratosthenes, fill the array, where
, if is prime;
, if is composite;
Print all numbers in the interval from to , for which .
Example
The filled array has the form:
The prime numbers in the interval are .
Algorithm realization
Declare the working array .
#define MAX 100001 int primes[MAX];
The gen_primes function implements the Sieve of Eratosthenes and fills the array. The numbers and are not prime.
void gen_primes(void) { int i, j; for (i = 0; i < MAX; i++) primes[i] = 1; primes[0] = primes[1] = 0; for (i = 2; i * i <= MAX; i++) if (primes[i]) for (j = i * i; j < MAX; j += i) primes[j] = 0; }
The main part of the program. Fill the array.
gen_primes();
Read the input data.
scanf("%d %d", &a, &b);
Print all primes in the interval from to .
for (i = a; i <= b; i++) if (primes[i]) printf("%d ", i); printf("\n");
Algorithm realization — bitset
Let's declare a variable of type bitset to store information about prime numbers.
#define MAX 100001 bitset<MAX> primes;
The gen_primes function implements the Sieve of Eratosthenes. We fill the bitset. The numbers and are not prime.
void gen_primes(void) { primes.flip(); // set all to 1 primes.reset(0); primes.reset(1); for (int i = 2; i <= sqrt(MAX); i++) if (primes.test(i)) for (int j = i * i; j < MAX; j += i) primes.reset(j); }
The main part of the program. Fill the array.
gen_primes();
Read the input data.
scanf("%d %d", &a, &b);
Print all primes in the interval from to .
for (i = a; i <= b; i++) if (primes.test(i)) printf("%d ", i); printf("\n");
Java realization
import java.util.*; public class Main { final static int MAX_SIZE = 100001; static BitSet bits = new BitSet(MAX_SIZE); public static void Eratosthenes() { bits.set(2, MAX_SIZE, true); for (int i = 2; i < Math.sqrt(MAX_SIZE); i++) { if (bits.get(i)) for (int j = i * i; j < MAX_SIZE; j += i) bits.set(j, false); } } public static void main(String args[]) { Scanner con = new Scanner(System.in); Eratosthenes(); int a = con.nextInt(); int b = con.nextInt(); for (int i = a; i <= b; i++) if (bits.get(i)) System.out.print(i + " "); System.out.println(); con.close(); } }
Python realization
The seive_of_eratosthenes function implements the Sieve of Eratosthenes and fills the list. The numbers and are not prime.
def seive_of_eratosthenes(n): is_prime = [True] * (n+1) is_prime[0], is_prime[1] = False, False for i in range(2, int(n ** 0.5) + 1): if is_prime[i]: for j in range(i * i, n + 1, i): is_prime[j] = False return is_prime
The main part of the program. Fill the list.
prime = seive_of_eratosthenes(100000)
Read the input data.
a, b = map(int, input().split())
Print all primes in the interval from to .
for i in range (a, b + 1): if prime[i]: print(i,end=' ')