Editorial
Let's represent a string of length as the concatenation of two non-empty palindromes of lengths and . In a palindrome of length , the first letters can be chosen arbitrarily (any of the letters available), and the remaining letters should be chosen to form a palindrome. This can be done in ways.
Similarly, in a palindrome of length , the first letters can be chosen arbitrarily, and the remaining letters should form a palindrome. This can be done in ways.
Constructing the concatenation of two palindromes with lengths and can be done in
ways. Since neither of the palindromes should be empty, then . The total number of possible palindromes is
All operations should be carried out modulo .
Algorithm realization
The computations are performed modulo . Let's define the modulo .
#define MOD 1000000007
The powmod function computes the value of .
long long powmod(long long x, long long n, long long m) { if (n == 0) return 1; if (n % 2 == 0) return powmod((x * x) % m, n / 2, m); return (x * powmod(x, n - 1, m)) % m; }
The main part of the program. Read the input data.
scanf("%d %d", &n, &k);
Compute the answer using the formula.
res = 0; for (l = 1; l < n; l++) res = (res + powmod(k, (l + 1) / 2, MOD) * powmod(k, (n - l + 1) / 2, MOD)) % MOD;
Print the answer.
printf("%lld\n", res);
Java realization
import java.util.*; public class Main { public final static long MOD = 1000000007; static long PowMod(long x, long n, long m) { if (n == 0) return 1; if (n % 2 == 0) return PowMod((x * x) % m, n / 2, m); return (x * PowMod(x, n - 1, m)) % m; } public static void main(String[] args) { Scanner con = new Scanner(System.in); long n = con.nextLong(); long k = con.nextLong(); long res = 0; for (long l = 1; l < n; l++) res = (res + PowMod(k, (l + 1) / 2, MOD) * PowMod(k, (n - l + 1) / 2, MOD)) % MOD; System.out.println(res); con.close(); } }
Python realization
The computations are performed modulo . Let's define the modulo .
mod = 10 ** 9 + 7
Read the input data.
n, k = map(int, input().split())
Compute the answer using the formula.
res = 0; for l in range(1,n): res = (res + pow(k, (l + 1) // 2, mod) * pow(k, (n - l + 1) // 2, mod)) % mod;
Print the answer.
print(res)