Жребий Крижановского
Петя играет с друзьями в игру, которую иногда называют "Жребий Крижановского". Правила игры следующие: в каждом туре каждый игрок загадывает произвольное натуральное число. После этого игрок, загадавший минимальное число, которое не повторяется, выигрывает в этом туре, причём его выигрыш равен этому числу. Например, если играют 6 человек и были загаданы числа 3, 2, 1, 1, 4 и 2, то выиграл первый игрок, причём его выигрыш равен 3. Если все загаданные числа повторяются, то тур считается ничейным и никто баллов не получает.
Общий выигрыш игрока за игру равен сумме баллов за все сыгранные туры.
Петя с друзьями при игре просто называют по очереди загаданные ими числа, а потом определяют, кто выиграл, и подсчитываю баллы. Однако при таком формате игры в принципе можно сжульничать, не загадывая число заранее, а, уже зная числа, названные предыдущими игроками, выбрать себе оптимальное "загаданное" число. Этим и пользуется Петя. Он называет число последним и старается выбрать число так, чтобы максимизировать свой выигрыш.
Идёт последний тур игры. Известны очки всех игроков перед этим туром и названные игроками числа. Выясните, какое число следует назвать Пете, чтобы по результатам игры у как можно большего числа игроков количество баллов было меньше, чем у него. Если таких чисел несколько, то Петя хочет назвать минимально возможное.
Входные данные
В первой строке вводится число n – количество игроков (2 ≤ n ≤ 100). Вторая строка содержит n чисел – баллы игроков перед последним туром (неотрицательные числа, не большие 100). Баллы перечислены в том порядке, в котором игроки обычно называют числа (то есть Петины баллы указаны последними). В третьей строке задано (n–1) число – числа, названные игроками в последнем туре (числа не превышают 100), в том порядке, в котором они их называли.
Выходные данные
Выведите число, которое следует назвать Пете.